Comparison of proliferation and differentiation of calvarial osteoblast cultures derived from Msx2 deficient and wild type mice.
نویسندگان
چکیده
We analyzed proliferation and differentiation of calvarial osteoblasts derived from Msx2 deficient in comparison with wild type mice. Calvarial osteoblast cultures from five to eight days old Msx2 deficient, heterozygous and wild type mice were studied for difference in proliferation and differentiation. Proliferation rate was assessed by counting cell number, BrdU and Calcein AM labeling. Differentiation was assessed by Von Kossa and alkaline phosphatase staining, northern blot hybridization with bone differentiation markers, infection of cell cultures with retrovirus expressing GFP under the control of type I collagen promoter fragment. At day six, cell number in cell culture derived from Msx2 deficient mice was 20% lower then in culture from wild type mice. There were 16.8% BrdU labeled cells in cell culture from Msx2 deficient mice, 20.9% in culture from heterozygous mice and 21.6% in culture from wild type mice. Cell cultures from Msx2 deficient mice showed lower intensity of fluorescence when marked with Calcein AM then cultures from wild type mice. Von Kossa staining showed increased mineralization and northern blot analysis showed increased levels of bone differentiation markers in cell cultures derived from Msx2 deficient mice. GFP came on earlier in Msx2 deficient cultures after infection with Col2.3 GFP retrovirus. We conclude that calvarial osteoblasts derived from Msx2 deficient mice have a lower rate of proliferation and demonstrate increased osteoblastic differentiation when compared to osteoblasts derived from wild type mice.
منابع مشابه
Keratocan is expressed by osteoblasts and can modulate osteogenic differentiation.
Keratocan is an extracellular matrix protein that belongs to the small leucine-rich proteoglycan family that also includes lumican, biglycan, decorin, mimecan, and fibromodulin. Members of this family are known to play a role in regulating cellular processes such as proliferation and modulation of osteoprogenitor lineage differentiation. The aims of this study were to evaluate the expression pa...
متن کاملMsx2 and Twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault.
The flat bones of the vertebrate skull vault develop from two migratory mesenchymal cell populations, the cranial neural crest and paraxial mesoderm. At the onset of skull vault development, these mesenchymal cells emigrate from their sites of origin to positions between the ectoderm and the developing cerebral hemispheres. There they combine, proliferate and differentiate along an osteogenic p...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملInitiation of Early Osteoblast Differentiation Events through the Direct Transcriptional Regulation of Msx2 by FOXC1
Hierarchal transcriptional regulatory networks function to control the correct spatiotemporal patterning of the mammalian skeletal system. One such factor, the forkhead box transcription factor FOXC1 is necessary for the correct formation of the axial and craniofacial skeleton. Previous studies have demonstrated that the frontal and parietal bones of the skull fail to develop in mice deficient ...
متن کاملOsteogenic Differentiation of Mesenchymal Stem Cells Via Osteoblast- Imprinted Substrate: In Vitro and In Vivo Evaluation in Rat Model
BACKGROUND: Stem cells have great effects in clinical cell-based therapy. Accordingly, controlling the behavior and directing the fate of stem cells cultured in the laboratory is an important issue. OBJECTIVES: The aim of this study was to evaluate osteogenic properties of adipose derived mesenchymal stem cells (ADSCs) which differentiated toward osteogenic linage by osteoblast-imprinted substr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Collegium antropologicum
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2009